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Coupling of Non-Axially Symmetric Hybrid
Modes in Dielectric Resonators

KAWTHAR A. ZAKI, SENIOR MEMBER, lEEE, AND CHUNMING CHEN, STUDENT MEMBER, IEEE

,Mvtracf — A method for the rigorous calculation of the coupling coeffi-

cient between dielectric resonators excited in non-axially symmetric hy-

brid modes is developed. A simplified model is derived which allows

approximate accurate calculations of coupling, without solving the detailed

boundary value problem. Experimental measurements of the coupling

between the two lowest hybrid modes were performed to verify the models,

and are found to be in excellent agreement with the calculations.

I. INTRODUCTION

D ELECTRIC RESONATORS made from highly tem-

perature stable low-loss ceramics are finding increas-

ing microwave applications due to their desirable proper-

ties and their commercial availability at reasonable prices.

Miniaturization of components is a major driving factor in

the use of these ceramics. Several applications (such as

filters) require the knowledge of the coupling between

resonators with high degree of accuracy.

Coupling between dielectric resonators excited in axially

symmetric modes (TE018, TMOIO, etc.) has been treated

extensively in the literature [1]–[4]. Although a generalized

approximate methodology that could be used for coupling

computation between non–axially symmetric modes in

dielectric resonators has been presented [5], there has been

no rigorous treatment of the subject, with results that can

directly be used for practical applications. The exception

to this is the treatment for coupling of hybrid HEII modes

by iris presented in [6].

The model used in [1] to perform the coupling calcula-

tion between the resonators excited in TEOIJ mode ap-

proximates each of the resonators by an axial magnetic

dipole. One of the dipoles radiates in the waveguide be-

yond cutoff. The fraction of the energy received by the

other dipole is used as a measure of the coupling coeffi-

cient.

This paper presents a rigorous technique for coupling

calculation between non–axially symmetric modes in cylin-

drical dielectric resonators enclosed in circular waveguides.

The technique is based on solving the boundary value
problem for the fields and resonant frequencies in the

combined two-resonator structures. A circuit model repre-

senting the two coupled resonators is used to reduce the
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problem of coupling calculations to that of finding the

resonant frequencies of two separate single resonators.

Section II describes the approach used for the solution

and derives the relationships among various configurations

of a single resonator’s resonant frequencies and couplings.

Field solutions using the mode-matching method are out-

lined in Section III. Section IV presents numerical and

experimental results performed to verify the theory. A

simplified approximate model is derived from the results

of the rigorous analysis, which can be used for the design

of the resonators without recourse to the detailed numeri-

cal solution of the boundary value problems. Experimental

measurements performed to verify the models are pre-

sented and show excellent agreement with the theoretical

calculations. Discussions and conclusions are contained in

Section V.

II. METHOD OF COUPLING CALCULATION

Consider two identical circular cylindrical dielectric res-

onators of radius a and length t placed coaxially inside a

perfectly conducting cylinder of radius b as shown in Fig.

1. The resonators have relative dielectric constant c, and

are spaced a distance 21 apart. The planar end walls of the

enclosure are perfectly conducting and are at a distance d

each from the resonators ends.

This structure has several resonances which correspond

to different field excitations. For axially symmetric

modes which have no angular variation, the fields can be

either transverse electric (TEO~&) or transverse magnetic

(TMo.,a). For fields which have angular variation, the
modes on the structure will be hybrid modes possessing

both electric and magnetic axial fields. For any particular

mode near its resonance, an equivalent circuit for the two

coupled resonators is shown in Fig. 2(a). This circuit

consists of two series resonant circuits coupled by a mu-

tual inductance M. The coupling coefficient k between the

resonators is defined in terms of the equivalent circuit

elements by

k= M/L. (1)

An alternative form of the equivalent circuit is shown in

Fig. 2(b). This form yields two-port parameters that are

identical with those of the circuit of Fig. 2(a), but it is

more convenient to use in the following discussions. If the

symmetry plane in Fig. 2(b) is replaced by a short circuit,

the resulting circuit will have a resonant frequency ~,

which is equal to the resonant frequency of the single
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Fig. 1. Two coupled dielectric resonators in a perfectly conducting

cylindrical enclosure.
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Fig. 2. Two forms of the equivalent circuit of the coupled resonators.

resonator shown in Fig. 3(a). This structure is obtained

from Fig. 1 by placing an electric wall (hence the suffix e

in ~,) in the symmetry plane. It is easily seen that the value

off, is related to the circuit parameters by

(2)

Similarly, replacing the symmetry plane in Fig. 2(b) by an

open circuit results in a single resonant circuit having a

resonant frequency ~~ which is equal to the resonant

frequency of the structure shown in Fig. 3(b), having

magnetic wall in the symmetry plane of Fig. 1. The value

of fm is given by

(3)

Equations (l)–(3) can be solved for the coupling coeffi-

cient k:

(4)

“e’tricwa
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Fig. 3. Equivalent circuits with symmetry planes replaced by (a) electric

wall and (b) magnetic wall.
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Fig. 4. (a) Equivalent circuit of a single resonator in an infinite guide.

(b) Two coupled resonators in an infinite guide. (c) Two coupled
resonators in a guide shortened at both ends.

Calculation’ of f, and fm as a function of the physical

parameters of the structure is obtained by solving the

boundary value problem as outlined in Section III below.

For dielectric resonators of given dimensions, the reso-

nant frequencies f= and fm can be considered functions of

the two variables 1 and d. It is clear that the coupling

coefficient k will be strongly dependent on 1, and to a

lesser extent on d. To explore the nature of this depen-

dence and to develop a model for the coupling in terms of

one variable (i.e., 1 or d), consider the cases shown in Fig.

4. A single resonator placed in an infinite guide, as shown

in Fig,. 4(a), will have resonant frequency Fo. When two

such resonators are placed in the infinite waveguide and
spaced 21 apart, as shown in Fig. 4(b), the resonant

frequency fO(/ ), of each of the two resonators changes for

two reasons:

(i) the effect of the other higher order modes;

(ii) the effect of the coupling between the resonators.
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The first effect is reflected in the equivalent circuit in Fig.

4(b), showing LC different from LOCOof Fig. 4(aJ and the

second effect is accounted for by the T section composed

of series arms of – M and the two shunt branches 2A4.

The circuit in Fig. 4(b) is characterized completely for any

1 by the frequencies ~e(l) and j.,(l) obtained by placing

an electric wall (short circuit) and magnetic wall (open

circuit) in the symmetry plane O–O’, respectively. It is easy

to show that the following relations hold:

[

111 1
— —

m= z fj(l) + f;(z) 1 (5)

lim ~0(1) = }~mm~~(l) = }~~~e(l) =FO. (6)
l-m

Let the functions G(l) and H(l) be defined by

(7)

(8)

The functions G(l) and H(l) have a physical interpreta-

tion associated with them. In terms of the equivalent

circuits of Fig. 4, the function G is simply the relative

change in the product LC of the value LOCO, while the

function H is the ratio MC/LOCO for two resonators in the

infinite waveguide. The parameters of the completely en-

closed resonator structure shown in Fig. 4(c) can be easily

computed from a knowledge of FO and the functions G(l)

and H(1) by the following relationships:

Equivalent isolated resonator resonant frequency:

1
—=+[l+G(l)+ G(d)].
f;’ c1

(9a)

(9b)

Resonant frequency with electric wall in the symmetry

plane O-O’ (Fig. 4(c)):

1
f:= (lOa)

2@,’-M[d)-M(l)]C’

11
–-# H(d)+ H(~)].

f:’ = f;’ o
(lOb)

Resonant frequency with magnetic wall in the symmetry

plane O–0’ (Fig. 4(c)):

1
(ha)

‘A=2n~L’– M(d)+ M(l)]C’

11
–-; [H(d) -H(l)].

f;’ = f;’ o
(llb)

Coupling coefficient between the two resonators:

f:z - f;2
k’(l, d) = ‘

H(1)

f: + f;’= l+ G(l)+ G(d)– H(d)”
(12)

To summarize, all parameters of the completely enclosed

resonator of Fig. 4(c) can be determined from the resonant

frequency FO of a single isolated resonator in an infinite

waveguide and the functions G(1), H(1) defined in (7) and

(8), respectively.

III. FIELD SOLUTIONS USING MODE MATCHING

This section briefly summarizes the method of solution

for the resonator’s fields and resonant frequencies. To

calculate the frequencies fo, f,, and f.,, defined in the last

section (see Fig. 4(a) and 4(b)), the method of mode

matching [7] is used. In this method the resonator is

considered to consist of cascaded sections of a circular

empty waveguide and a dielectric loaded waveguide. The

transverse fields in the dielectric loaded region are rep-

resented as a linear combination of incident and reflected

hybrid modes of an infinite dielectric-loaded-waveguide.

The transverse fields in the empty guides are represented

as a linear combination of normal waveguide modes (TE~l~

and TM,,,,, modes) satisfying the boundary condition at

the end plane of vanishing tangential electric or magnetic

fields for an electric wall or magnetic wall, respectively.

For the case of the resonator in Fig. 4(a), the transverse

fields in the infinite region of the empty waveguide are

represented as a combination of traveling (or evanescent)

normal waveguide modes. All the fields must have the

same angular variation (sin m$ and cos m@). The boundary

conditions to be satisfied are that the tangential electric

and magnetic fields be continuous. An integrated weighted

mean square error criterion is used to convert the equa-

tions resulting from the application of these boundary

conditions to an infinite set of linear homogeneous equa-

tions with the unknowns as the mode expansion coeffi-

cients. Numerical solution of this system is accomplished

by truncating it to a finite size N. The roots of the

equations resulting from equating the determinant of this

matrix to zero are the frequencies FO, f,, and f.,, as

appropriate.

This procedure was implemented numerically by adopt-

ing the computer programs developed in [7]. The programs

were thoroughly tested and convergence criteria similar to

those described in [7] were used to ascertain convergence.

IV. NUMERICAL AND EXPERIMENTAL RESULTS

Typical results of the resonant frequencies for different

modes are shown in Fig. 5. Parameters used in the genera-
tion of this figure are c, = 35.74, a = 0.34 in, b = 0.5 in,

t = 0.3 in and d = 0.2 in. Also shown in Fig. 5 are mea-

sured resonances of the structure composed of two such

resonators versus the half separation between the reso-

nators 1. The measurements were made using a structure of

two dielectric resonators in cylindrical enclosures, with a

coaxial SMA connector lightly coupled to one of the

resonators. The spacing between the resonators was varied

by inserting thin spacers. The probe depth was changed for

each spacing so that the reflection coefficient at resonance

was at least 20 dB. Frequencies of minimum reflection

were measured accurately for each mode. For any particu-
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Fig. 6. Calculated and measured coupling k between two resonators for

the two lowest hybrid modes. (Resonator parameters are the same as m
Fig. 5.)

lar mode, the lower frequency is identified as f.,, while the

higher frequency is identified as f,. Agreement between

both the theory and the measured data is quite good. For

the same parameters given above, the measured and com-

puted coupling coefficients k as a function of 1 calculated

from (4) are shown in Fig. 6.

To verify the model presented in Section 11 for calcula-
tion off, and fm in the case of an enclosed resonator from

the values in an infinite guide, the same resonator parame-

ters were used to calculate Fo, the functions G and ~,

defined in (7) and (8), and the variation off. and f~ with

1, for d as a parameter. All frequency data were normal-

ized to F. = 3.!)439 GHz, and all lengths are normalized tO

free-space wavelength A.= c/Fe. Fig. 7(a) gives the varia-

tion of f, and fm with(l\A 0) for the infinite wavegl~ide

case (d/ Ao = co). The functions G and H are shown in

Fig. 7(b) and (c), respectively. The variations of ( fJFo)

and (Jfm/Fe) with (1/~ o) for (d/~ 0) as a parameter are

shown in Figure 7(d). In this figure the solid lines give the

exact values computed from the direct numerical solution

of the boundary value problem. The dashed lines are the

values calculated from the circuit model described in Sec-

tion 11. For large values of (d/A o), the two solutions are
identical. As (d/A o) decreases, the approximate solution

for (j,/Fo) starts to deviate from the exact solution,

particularly for small values for (z/~0). For (d/~0)’ >0.1,

the error in the approximate solution for ( f,/Fo) is less

than 1 percent, while ( f~ /~o ) is accurate with error less

than 0.2 percent for all cases. The error in the approximate

model for small values of (d/A o) is due to the fact that

this model does not include any higher order mode interac-

tions between the short circuits at the two ends of the

resonators. This assumption fails for small values of

(d/Ao) and (l,[~o).

Coupling was computed for a wide range of parameters

of the resonators, the enclosure and the spacing 21 be-

tween the resonators, for the lowest frequency hybrid
mode (HE1l). .A few results of these calculations are s~m-

marized in Fig. 8. From Fig. 8, it is seen that for values of

the coupling k less than 0.075, the coupling can be accu-

rately ~clescribed by the expression

k = koe-zd (13)
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where a is the attenuation constant of the TEII mode in a

circular waveguide of radius b at the resonant frequency of

the resonator and kO is a constant that depends on the

resonator parameters. Table I gives a typical range of

parameters for two coupled resonators. Values of a and IcO

determined from numerical computations are shown. The
table also compares the attenuation factors a as de-

termined from the least square fit of the computed points

and from the waveguide attenuation constant a w,~,, given

by

W=(%%R%3’14)
where c is the speed of light and F. is the resonant
frequency of a single resonator in an infinite waveguide.

Agreement between the values of aw.~, and a is excellent

(better than 0.06 percent).

The constant kO & a complicated function of the strac-

ture parameters. Attempts were made to obtain empirical

formulas which relate kO to the physical dimensions of the

structure. The best form obtained for such a formula is

kO = cO(a/b)cl(t/AO) c2(d/AO)c3~$ (15)

where A ~ is the free-space wavelength at Fo. Numerical fit

of the data obtained for k. for a wide range of parameters

yields the following values for the coefficients in Eq. (15):

CO= 1.3293 c1 = 1.1057 Cz = – 0.6298

Cj = – 0.2154 cd= 0.2394. (16)

These values yield kO with an accuracy better than 10

percent for frequencies FO in the range of 1 GHz to 10

GHz and c, in the range 30 to 90.

One way to adjust the coupling coefficient between two
resonators without changing their spacing (21 ) is to insert

two thin conducting obstacles (e.g. screws) opposite to
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TABLE I

TYPICAL PARAMETERS FOR COUPLED RESONATORS

each other midway between the resonators [8]. It is inter-

esting to note that the effect of such an obstacle is to

increase the coupling between the resonators as their

penetration is increased. This is observed experimentally,

and can also be explained physically in terms of the model

used for coupling computation (eq. (4)). The conducting

obstacles do not affect ~, since the tangential electric field

is zero in the plane of the obstacles. On the other hand, for

j.,, a tangential electric field exists in the plane of the

obstacles; hence the value of ~~ is lowered as the penetra-

tion of the obstacles is increased. Thus, from (4) it be-

comes apparent that the coupling kO actually increases as

the depth of penetration of the obstacle is increased.

V. CONCLUSIONS

The coupling between hybrid modes in dielectric reso-

nators can be accurately calculated by solvlng for the

resonant frequencies of single resonators with electric and

magnetic walls. Experimental results verified the accuracy

of the calculations. An approximate circuit model is de-

rived which uses the calculated resonant frequencies of

resonators in infinite waveguide to derive the coupling

parameters for any dimensions of the enclosure. This ap-

proximate model provides excellent accuracy for a wide

range of parameters of practical interest. A simplified

exponential model that requires only the two parameters

k. and a is postulated which accurately predicts the

results for a limited, but wide range of parameters. The

attenuation a is simply the attenuation constant of the

TEII mode in a waveguide beyond cutoff of the same

radius as the enclosure, at the resonant frequency of the

resonator. An empirical formula is given for the constant

k. as a function of the resonator parameters.
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