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Coupling of Non—Axially Symmetric Hybrid
Modes in Dielectric Resonators

KAWTHAR A. ZAKI, SENIOR MEMBER, IEEE, AND CHUNMING CHEN, STUDENT MEMBER, IEEE

Abstract — A method for the rigorous calculation of the coupling coeffi-
cient between dielectric resonators excited in non-axially symmetric hy-
brid modes is developed. A simplified model is derived which allows
approximate accurate calculations of coupling, without solving the detailed
boundary value problem. Experimental measurements of the coupling
between the two lowest hybrid modes were performed to verify the models,
and are found to be in excellent agreement with the calculations.

1. INTRODUCTION

ELECTRIC RESONATORS made from highly tem-

perature stable low-loss ceramics are finding increas-
ing microwave applications due to their desirable proper-
ties and their commercial availability at reasonable prices.
Miniaturization of components is a major driving factor in
the use of these ceramics. Several applications (such as
filters) require the knowledge of the coupling between
resonators with high degree of accuracy.

Coupling between dielectric resonators excited in axially
symmetric modes (TEy;, TM,, etc.) has been treated
extensively in the literature [1]-[4]. Although a generalized
approximate methodology that could be used for coupling
computation between non-axially symmetric modes in
dielectric resonators has been presented [5], there has been
no rigorous treatment of the subject, with results that can
directly be used for practical applications. The exception
to this is the treatment for coupling of hybrid HE,; modes
by iris presented in [6].

The model used in [1] to perform the coupling caicula-
tion between the resonators excited in TE,; mode ap-
proximates each of the resonators by an axial magnetic
dipole. One of the dipoles radiates in the waveguide be-
yond cutoff. The fraction of the energy received by the
other dipole is used as a measure of the coupling coeffi-
cient.

This paper presents a rigorous technique for coupling
calculation between non-axially symmetric modes in cylin-
drical dielectric resonators enclosed in circular waveguides.
The technique is based on solving the boundary value
problem for the fields and resonant frequencies in the
combined two-resonator structures. A circuit model repre-
senting the two coupled resonators is used to reduce the
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problem of coupling calculations to that of finding the
resonant frequencies of two separate single resonators.

Section II describes the approach used for the solution
and derives the relationships among various configurations
of a single resonator’s resonant frequencies and couplings.
Field solutions using the mode-matching method are out-
lined in Section III. Section IV presents numerical and
experimental results performed to verify the theory. A
simplified approximate model is derived from the results
of the rigorous analysis, which can be used for the design
of the resonators without recourse to the detailed numeri-
cal solution of the boundary value problems. Experimental
measurements performed to verify the models are pre-
sented and show excellent agreement with the theoretical
calculations. Discussions and conclusions are contained in
Section V.

II. MEetHOD OF COUPLING CALCULATION

Consider two identical circular cylindrical dielectric res-
onators of radius a and length ¢ placed coaxially inside a
perfectly conducting cylinder of radius b as shown in Fig.
1. The resonators have relative dielectric constant €, and
are spaced a distance 2/ apart. The planar end walls of the
enclosure are perfectly conducting and are at a distance 4
each from the resonators ends.

This structure has several resonances which correspond
to different field excitations. For axially symmetric
modes which have no angular variation, the fields can be
either transverse electric (TE,,,;) or transverse magnetic
(TM,,,,,s).- For fields which have angular variation, the
modes on the structure will be hybrid modes possessing
both electric and magnetic axial fields. For any particular
mode near its resonance, an equivalent circuit for the two
coupled resonators is shown in Fig. 2(a). This circuit
consists of two series resonant circuits coupled by a mu-
tual inductance M. The coupling coefficient k between the
resonators is defined in terms of the equivalent circuit
elements by

k=M/L. (1)
An alternative form of the equivalent circuit is shown in
Fig. 2(b). This form yields two-port parameters that are
identical with those of the circuit of Fig. 2(a), but it is
more convenient to use in the following discussions. If the
symmetry plane in Fig. 2(b) is replaced by a short circuit,
the resulting circuit will have a resonant frequency f,
which is equal to the resonant frequency of the single
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Fig. 1.

Two coupled dielectric resonators in a perfectly conducting
cylindrical enclosure.
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Fig. 2. Two forms of the equivalent circuit of the coupled resonators.

resonator shown in Fig. 3(a). This structure is obtained
from Fig. 1 by placing an electric wall (hence the suffix e
in f,) in the symmetry plane. It is easily seen that the value
of f, is related to the circuit parameters by

1

T =y vire ®

Similarly, replacing the symmetry plane in Fig. 2(b) by an
open circuit results in a single resonant circuit having a
resonant frequency f,, which is equal to the resonant
frequency of the structure shown in Fig. 3(b), having
magnetic wall in the symmetry plane of Fig. 1. The value
of f,, is given by

L 3
20/(L+ M)C ®)

Equations (1)—(3) can be solved for the coupling coeffi-
cient k:

fn=

M f2 I
k= L f2+f2 @)
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Fig. 4. (a) Equivalent circuit of a single resonator in an infinite guide.
(b) Two coupled resonators in an infinite guide. (¢) Two coupled
resonators in a guide shortened at both ends.

Calculation of f, and f,, as a function of the physical
parameters of the structure is obtained by solving the
boundary value problem as outlined in Section III below.

For dielectric resonators of given dimensions, the reso-
nant frequencies f, and f, can be considered functions of
the two variables / and d. It is clear that the coupling
coefficient k will be strongly dependent on /, and to a
lesser extent on d. To explore the nature of this depen-
dence and to develop a model for the coupling in terms of
one variable (i.e.,, [ or d), consider the cases shown in Fig.
4. A single resonator placed in an infinite guide, as shown
in Fig. 4(a), will have resonant frequency F,. When two
such resonators are placed in the infinite waveguide and
spaced 2/ apart, as shown in Fig. 4(b), the resonant
frequency fy(/).of each of the two resonators changes for
two reasons:

(i) the effect of the other higher order modes;
(i) the effect of the coupling between the resonators.
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The first effect is reflected in the equivalent circuit in Fig.
4(b), showing LC different from L C, of Fig. 4(a), and the
second effect is accounted for by the T section composed
of series arms of — M and the two shunt branches 2M.
The circuit in Fig. 4(b) is characterized completely for any
[ by the frequencies f,(/) and f, (/) obtained by placing
an electric wall (short circuit) and magnetic wall (open
circuit) in the symmetry plane 0-0’, respectively. It is easy
to show that the following relations hold:

()

1_1[1+1}
A 2020 2

lim fo(7) = Jim full) = Jim f)=F. (6)
=00 — o0 -
Let the functions G(/) and H(/) be defined by
FO2
G(l)=—z7—1 (7)

(1)

H(l fy [ : : } (8)
N VEO =0l
The functions G(/) and H(I) have a physical interpreta-
tion associated with them. In terms of the equivalent
circuits of Fig. 4, the function G is simply the relative
change in the product LC of the value L,C,, while the
function H is the ratio MC/LC, for two resonators in the
infinite waveguide. The parameters of the completely en-
closed resonator structure shown in Fig. 4(c) can be easily
computed from a knowledge of F;, and the functions G (/)
and H(!) by the following relationships:
Equivalent isolated resonator resonant frequency:

1
= smite (%)
S [1+G(H)+G(d)]. (9p)

S 5

Resonant frequency with electric wall in the symmetry
plane 0-0' (Fig. 4(c)):

1
Je= 2a[L'— M(d)- M(D)]C’ (102)
1 1 1

— — [H(d)+ H(1)]. (10b)

PR
Resonant frequency with magnetic wall in the symmetry
plane 0-0’ (Fig. 4(c)):

1

In = ST 3(d) T MDIC (112)

1 1 1
—=-=—-—|H(d)—-H(])]. 11
=g ElH@O- DL (1)
Coupling coefficient between the two resonators:
12 72
e~ f H(!
K(1,d) -1 v (12)

P2 1+6(N+ G(d)- H(d)
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To summarize, all parameters of the completely enclosed
resonator of Fig. 4(c) can be determined from the resonant
frequency £, of a single isolated resonator in an infinite
waveguide and the functions G(/), H(!) defined in (7) and
(8), respectively.

1. FIeLD SOLUTIONS USING MODE MATCHING

This section briefly summarizes the method of solution
for the resonator’s fields and resonant frequencies. To
calculate the frequencies f;, f,. and f,,, defined in the last
section (see Fig. 4(a) and 4(b)), the method of mode
matching [7] is used. In this method the resonator is
considered to consist of cascaded sections of a circular
empty waveguide and a dielectric loaded waveguide. The
transverse fields in the dielectric loaded region are rep-
resented as a linear combination of incident and reflected
hybrid modes of an infinite dielectric-loaded-waveguide.
The transverse fields in the empty guides are represented
as a linear combination of normal waveguide modes (TE,,,,
and TM,,, modes) satisfying the boundary condition at
the end plane of vanishing tangential electric or magnetic
fields for an electric wall or magnetic wall, respectively.
For the case of the resonator in Fig. 4(a), the transverse
fields in the infinite region of the empty waveguide are
represented as a combination of traveling (or evanescent)
normal waveguide modes. All the fields must have the
same angular variation (sin m¢ and cos m¢). The boundary
conditions to be satisfied are that the tangential electric
and magnetic fields be continuous. An integrated weighted
mean square error criterion is used to convert the equa-
tions resulting from the application of these boundary
conditions to an infinite set of linear homogeneous equa-
tions with the unknowns as the mode expansion coeffi-
cients. Numerical solution of this system is accomplished
by truncating it to a finite size N. The roots of the
equations resulting from equating the determinant of this
matrix to zero are the frequencies F,, f,, and f,. as
appropriate.

This procedure was implemented numerically by adopt-
ing the computer programs developed in [7]. The programs
were thoroughly tested and convergence criteria similar to
those described in [7] were used to ascertain convergence.

1V. NUMERICAL AND EXPERIMENTAL RESULTS

Typical results of the resonant frequencies for different
modes are shown in Fig. 5. Parameters used in the genera-
tion of this figure are ¢,=35.74, a=0.34 in, b=0.5 in,
t=10.3 in and d =0.2 in. Also shown in Fig. 5 are mea-
sured resonances of the structure composed of two such
resonators versus the half separation between the reso-
nators /. The measurements were made using a structure of
two dielectric resonators in cylindrical enclosures, with a
coaxial SMA connector lightly coupled to one of the
resonators. The spacing between the resonators was varied
by inserting thin spacers. The probe depth was changed for
each spacing so that the reflection coefficient at resonance
was at least 20 dB. Frequencies of minimum reflection
were measured accurately for each mode. For any particu-
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Fig. 6. Calculated and measured coupling k between two resonators for
the two lowest hybrid modes. (Resonator parameters are the same as 1n
Fig. 5.)

lar mode, the lower frequency is identified as f,,, while the
higher frequency is identified as f,. Agreement between
both the theory and the measured data is quite good. For
the same parameters given above, the measured and com-
puted coupling coefficients k as a function of / calculated
from (4) are shown in Fig. 6.

To verify the model presented in Section II for calcula-
tion of f, and f,, in the case of an enclosed resonator from
the values in an infinite guide, the same resonator parame-
ters were used to calculate F,, the functions G and H,
defined in (7) and (8), and the variation of f, and f, with
I, for d as a parameter. All frequency data were normal-

ized to F, = 3.9439 GHz, and all lengths are normalized to
free-space wavelength A, = ¢/F;. Fig. 7(a) gives the varia-
tion of £, and f,, with (I/X,) for the infinite waveguide
case (d/\,=00). The functions G and H are shown in
Fig. 7(b) and (c), respectively. The variations of (f,/F;)
and (f, /F,) with ({/X,) for (d/A,) as a parameter are
shown in Figure 7(d). In this figure the solid lines give the
exact values computed from the direct numerical solution
of the boundary value problem. The dashed lines are the
values calculated from the circuit model described in Sec-
tion I1. For large values of (d/A,), the two solutions are
identical. As (d/\,) decreases, the approximate solution
for (f,/F,) starts to deviate from the exact solution,
particularly for small values for (//A). For (d/Ag) > 0.1,
the error in the approximate solution for (f,/F;) is less
than 1 percent, while (f,,/F,) is accurate with error less
than 0.2 percent for all cases. The error in the approximate
model for small values of (d/A,) is due to the fact that
this model does not include any higher order mode interac-
tions between the short circuits at the two ends of the
resonators. This assumption fails for small values of
(d/Ngy)and (I/Ay).

Coupling was computed for a wide range of parameters
of the resonators, the enclosure and the spacing 2/ be-
tween the resonators, for the lowest frequency hybrid
mode (HE;;). A few results of these calculations are sum-
marized in Fig. 8. From Fig. 8, it is seen that for values of
the coupling k less than 0.075, the coupling can be accu-
rately described by the expression

k=kye >

(13)



1140

3
Fo' R

(/%) =

(fu/Fo)

[ S|

1111

|

(¢/20)
0.0 0.1 0.2 0.3 0.4

H{/ %)

1077 — ‘

10

107° 7* ——L 4,_J_¥

\\\H'\‘

10 T T T (£/20)

0.0 0.1 0.2 0.3 0.4

©
Fig. 7. (a) Variation of f, /F, and f,

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 12, DECEMBER 1987

G(£/ 20}

10

]
o
10 B T S — e S —

T T
0 0.1 0.2 0.3 0.4
(b)
1.10 i‘ - 1 7 "Vﬁ *—[ 7
j Exact |
J ]
4 — — —— Approximate Model
b ; = .0668
1.05 < “J’— 0 R
J— 4
JT
- 36
- ot Sy Fi
/i_
| I /Ao
1.00 — d -
— = .2
N y : Pl
| d
B 7 (/m/Fo) o = .334
i k3
0.90 — T T T T [T T TTT T T T 1 \%
0.0 0.1 0.2 0.3 © 0.4

@

/Fy, with [/A, for an infinite guide (d/A,) =co. (b) Variation of the function

g(l)\/xo) with [/),. (¢) Variation of the function H(//A,) with [/X,. (d) Variation of f, /F, with [ /X, for different

0

where a is the attenuation constant of the TE; mode in a
circular waveguide of radius b at the resonant frequency of
the resonator and k, is a constant that depends on the
resonator parameters. Table I gives a typical range of
parameters for two coupled resonators. Values of a and &,
determined from numerical computations are shown. The
table also compares the attenuation factors a« as de-
termined from the least square fit of the computed points
and from the waveguide attenuation constant ay, g, given
by

Uy G.
3

55 - (e

b 1.841¢

(14)
where ¢ is the speed of light and F; is the resonant
frequency of a single resonator in an infinite waveguide.
Agreement between the values of ay ¢ and «a is excellent
(better than 0.06 percent).

The constant k, is a complicated function of the struc-
ture parameters. Attempts were made to obtain empirical
formulas which relate k, to the physical dimensions of the
structure. The best form obtained for such a formula is

ko=co(a/b)*(t/No)*(d/No) % (1)
where Ay is the free-space wavelength at F;. Numerical fit
of the data obtained for k for a wide range of parameters
yields the following values for the coefficients in Eq. (15):

cp=13293  ¢,=1.1057 ¢,=—0.6298
c;=—02154 ¢, =0239%. (16)

These values yield k, with an accuracy better than 10
percent for frequencies F; in the range of 1 GHz to 10
GHz and ¢, in the range 30 to 90.

One way to adjust the coupling coefficient between two
resonators without changing their spacing (2/) is to insert
two thin conducting obstacles (e.g. screws) opposite to



ZAKI AND CHEN: COUPLING OF NON-AXIALLY SYMMETRIC HYBRID MODES

10

10

coupling coefficient k

10

10

10

coupling coefficient &k

10

Fig. 8.

/)

(@)

0.8

1.0

Half separation between resonators ¢

[

0.

4

(b)

0.

T

6

0.8

1

Half separation between resonators £”

(2) Variation of coupling coefficient with separation between resonators for various parameters. (b) Variation of
couplmg coefficient with separation between resonators for various parameters.

.0

1141



1142
~ TABLEI ‘
TyPICAL PARAMETERS FOR COUPLED RESONATORS

a” BT i e, dar fu o aw.G. kO
30 | 51 | 3 | 3574 | .2 | 4.2807 | 2.8013 | 2.7995 | 0.17493
34 | 4 | 3 | 3574 | .2 | 3.8133 | 4.1321 | 41313 | 0.32040
34 | 6 | 3 | 3574 | 2 | 40132 | 2.2043 | 2.2042 | 0.20120
34 | 51 | 3 | 3574 | .2 | 40180 | 2.90i1 | 2.9011 | 0.24937
34 | 51 | 2 | 3574 | .2 | 44755 | 27138 | 2.7i25 | 0.18709
34 | 51 | 3 | 300 | .2 | 42082 | 27959 | 27951 | 0.27852
34 | B | 3 | 400 | 2 | 88373 | 2.9776 | 2.9771 | 0.237%8
34 | 51 | 8 | 900 | .2 | 26437 | 3.3252 | 3.3249 | 0.18575
34 | 51 | 2 | 3574 | .1 | 40174 | 2.9096 | 2.0096 | 0.25805
34 | 51 | 3 | 3574 | 4 | 3.9754 | 2.9259 | 2.9254 | 0.22472
4 | 51 | 3 | 3574 | .2 | 3.5166 | 4.1318 | 4.1321 | 0.28839

each other midway between the resonators [8]. It is inter-
esting to note that the effect of such an obstacie is to
increase the coupling between the resonators as their
penetration is increased. This is observed experimentally,
and can also be explained physically in terms of the model
used for coupling computation (eq. (4)). The conducting
obstacles do not affect f, since the tangential electric field
is zero in the plane of the obstacles. On the other hand, for
f... a tangential electric field exists in the plane of the
obstacles; hence the value of £, is lowered as the penetra-
~ tion of the obstacles is increased. Thus, from (4) it be-

" comes apparent that the coupling k, actually increases as
the depth of penetration of the obstacle is increased.

V. CONCLUSIONS

The coupling between hybrid modes in dielectric reso-
nators can be accurately calculated by solving for the
resonant frequencies of single resonators with electric and
magnetic walls. Experimental results verified the accuracy
of the calculations. An approximate circuit model is de-
rived which uses the calculated resonant frequencies of
resonators in infinite waveguide to derive the coupling
parameters for any dimensions of the enclosure. This ap-
proximate model provides excellent accuracy for a wide
range of parameters of practical interest. A simplified
exponential model that requires only the two parameters
k, and a is postulated which accurately predicts the
results for a limited, but wide range of parameters. The
attenuation « is simply the attenuation constant of the
TE,; mode in a waveguide beyond cutoff of the same
radius as the enclosure, at the resonant frequency of the
resonator. An empirical formula is given for the constant
k, as a function of the resonator parameters.
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